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Interfacial Tension of the Chiral Potts Model
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We calculate the interfacial tension of the N-state chiral Potts model by solving
the functional relations for the transfer matrices of the model with skewed
boundary conditions. Our result is valid for the general physical model (with
positive Boltzmann weights) and at all subcritical temperatures. The interfacial
tension has been calculated previously for the superintegrable chiral Potts
model with skewed boundary conditions. Using Z-invariance, Baxter has argued
that the interfacial tension of this model should be the same as the interfacial
tension of the general physical model. We show that this is indeed the case.

KEY WORDS: Statistical mechanics; lattice models; chiral Potts model;
interfacial tension.

1. INTRODUCTION

The interfacial tensions of the chiral Potts model have been calculated
recently in a series of papers by Baxter.!":? In the first, the functional rela-
tions which were originally derived for the model with periodic boundary
conditions in refs. 3 and 4 were rederived for the model with skewed
boundary conditions. The interfacial tensions were then calculated for the
model in the zero-temperature limit. They were found to be independent of
the vertical rapidities, as was expected from Z-invariance.’’

This independence implied a shortcut to calculating the interfacial ten-
sions for the model at arbitrary temperatures; one could choose the vertical
rapidities so as to make the model “superintegrable.” The superintegrable
chiral Potts model is a nonphysical model corresponding to a particular
choice of the vertical rapidities. This simplifies the functional relations and

! Theoretical Physics, I.A.S., Australian National University, Canberra, A.C.T. 0200,
Australia.

2 Theoretical Physics, 1.A.S., and School of Mathematical Sciences, Australian National
University, Canberra, A.C.T. 0200, Australia.

1

0022-4715/96/0100-0001809.50/0 © 1996 Plenum Publishing Corporation



2 O’Rourke and Baxter

hence the transfer matrices, making the model easier to solve. The inter-
facial tensions thus obtained should be the same as those of the physical
model. This program was carried through in ref 2 and the interfacial
tensions and critical exponents calculated.

There is, however, a potential flaw in this argument. As the superin-
tegrable chiral Potts model is nonphysical, there is a problem in applying
Z-invariance, although in refs. 1 and 2 it was argued that the result for the
interfacial tensions should still hold.

In this paper, we directly calculate the interfacial tensions, using the
low-temperature results of ref. 1, but without reference to the superinte-
grable model. We consider the functional relations of the general physical
model with skewed boundary conditions at general subcritical tempera-
tures. We find that the method of solving the functional relations in refs. 6
and 7 for the model with periodic boundary conditions generalizes with
only minor modifications to the skewed case. We solve the functional rela-
tions for a band of L complex largest eigenvalues, and from these we
calculate the free energy and interfacial tension. We find that this is indeed
the result given in ref. 2 and hence that the Z-invariance arguments hold.

In refs. 6 and 7 the free energy was calculated for the homogeneous
model (with all vertical rapidities equal), and for |4,| < 1. Here we consider
an alternating model (with the vertical rapidities aiternately p and p' along
the row), and with |1 | > 1. We find our result to be the analytical con-
tinuation of the |4,| <1 result, and that the free energy of the alternating
model is simply the arithmetic mean of the free energy of the homogeneous
model with vertical rapidities p and p', as we expect from Z-invariance.®

2. THE MODEL

Consider the square L x M lattice rotated through 45 deg, shown in
Fig. 1. It has 2M rows, with L sites in each row, for a total of 2LM sites.
Spins, denoted o;, sit on the sites of the lattice, and take on the integer
values 0, 1,.., N—1.

We impose the skewed boundary conditions used in ref 1 in the
horizontal direction, that is,

O 1=0,—T 2.1

where ¢, and g, ., are, respectively, the first and last spins in each row,
and retain normal periodic boundary conditions vertically. Here r (the
“skew parameter”) is some integer, restricted to the interval 0 <r<N—1.
When r =0, we regain normal periodic boundary conditions.
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Fig. 1. The square lattice with L sites per row and M =2. The Boltzmann weights W,, and
WM in the SW — NE and SE — NW directions, respectively, are indicated. Also shown are
the horizontal rapidity variable g and the alternating vertical rapidities p and p'.

Let @ be the primitive root of unity @ =", and let @' =™V, Let
k and k' be real parameters, 0 <k, £’ <1, related by

K+k?=1 (2.2)
and let # be the real solution to
N =(1=k)/(1+k') (2.3)

Further, define the “g-variables” ¢ = {xq, Vs Bgs Ags tq} to be a set of com-
plex numbers related by

xN+yN=k(14+x)y)),  kxY=1-ku;®, — kyl=1-Ku) (24)
Lg=XgVgs '14=ﬂ2' (2.5)

The variables ¢, and 1, are related by
1 1+k2 =K%Y A,—1\2 nN—1¥
At —= ; -, ( . ) = N qN
Ay k A +1 -1

Sets of p- and p'-variables are defined analogously. Due to the relations
between the variables, there is only one independent parameter in each of
these sets. Of the various automorphisms of the variables that leave these
relations unchanged (see ref. 4), we use the following:

(2.6)

n

Rig—{y, wx,u;' wt, A"} (2.7)

q
gk, ly: g = {0y, o' pn ;" @1, 271 (2.8)

where R=g(0, 1). We shall often write g(k, /) as gkl.
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Associated with each of the dashed lines in Fig. 1 is a rapidity variable,
we call it g for the horizontal and p for the vertical lines. In general we can
allow them to be different for each line, but a “sufficient level of generality”
is to set all of the horizontal rapidities to the same value ¢ and to allow
the vertical ones to alternate along the row, taking the values p and p’ as
indicated in the figure.

Nearest neighbor spins on the lattice interact along SW — NE edges
between sites i and j with Boltzmann weight W, (g, —g;), where (for n an

integer)
(n)—(””)n [12=%% (29)

Y
Ly) j=1YVp— WO X,

and on SE— NW edges, the spins between sites k and j interact with
Boltzmann weight W, (o, —0;), where

_ " wx, —m'x
W, n)=(yu)" ] 22— (2.10)

P'q p'tq jl;[l y,,—w’y,,v
[We have normalized the weights so that W{(0)= #{(0)=1. This is the
normalization used in the functional relations in ref. 1, but is different from
that used in refs. 6 and 7 for the calculation of the free energy.] The

weights satisfy the periodicity conditions

W, (n+N)=W,(n) and W,

r'q

(n+N)=W, (n) (211)

which follow from the identities

N N_\.N _
(‘i> =227 and ()= K;V—y” (2.12)

Hq Y qu - Xp — Yy
The Boltzmann weights also satisfy the star—triangle relation
Z wb—dy W, (a—d) W, (d—c)

= (SpgSar fpp) Wogla—b) W (b—c) W, (a—c) (2.13)

for all rapidities p, p’, ¢ and for all integers a, b, c. The function f,, is a
complex-valued function of the p- and g¢-variables, its Nth power being

N = dety [ W, (i — ])]/1‘[1 An) (2.14)

n=0



Interfacial Tension of the Chiral Potts Model 5

where in our normalization

dety [ Wi — )] = NV2ein = WN’W2[1 Up=wlt)
N jon (xp—ax Y (y,—wly,)
(2.15)
We also define a related function g,,, with its Nth power being
_ N—-1
g,’)’q=detN[ W, i—J)] IT W, (n) (2.16)
n=0
The functions f,, and g, satisfy the following relations:
(Y =Xy, =y )Nt) —1tT)
Sor=8m=1, JoaSao=8pq8ap= I - L (2.17)

The row-to-row transfer matrices T and T’ are defined as follows. Let
the spins in three consecutive rows, each above the other, be o=
{o,,09,.0.}, 6’ ={0}, 0%,.., 07}, and 6" ={0{, 63,.., 07 }. These are the
bottom three rows of the lattice in Fig. 1. Then T is the N* by N* matrix
with entries

L
I—[ pt/ ( Ot U_;) (2.18)

and T is the N* by N* matrix with entries

H 205 —0]) Wyilo;—aj 1) (2.19)
Jj=1
We will regard p and p’ as fixed, ¢ as a free variable, and denote the
dependence of T and T on g explicitly by T, and T,.
As a result of the star—triangle relation, the transfer matrices satisfy the
commutation relation

T[ T.\- = (fp'qux/qufp‘s)L Ts Tq (220)

for all horizontal rapidities ¢ and s, and for any skew parameter r.

The commutation relation implies that one can simultaneously
diagonalize the transfer matrices 7, and T,, by the coupled similarity trans-
formations

T,—»P7'T,Q, T,-Q'T,P (2.21)

where P and Q are matrices which are independent of the g-variables.
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The eigenvectors of T, and Tq, x and y, are the solutions to the
coupled vector equations

T,y = (scalar) x, T x = (scalar) y (2.22)

q

where the eigenvectors are independent of g also.

Multiplying any equation involving the matrices T, or Tq (or any of
the 7; matrices, which are defined shortly) on the right by the appropriate
x or y effectively replaces the matrix by its eigenvalue. Thus any relation
between the matrices can also be considered as a relation between their
eigenvalues, and hence our notation does not differentiate between the
matrices and their eigenvalues. .

The transfer matrices T, and Tq are not completely independent. From
Fig. 1, we see that T,, can be obtained from T, by interchanging p and p’

Fig. 2. The cut complex 1, plane, with N=3, with the branch cuts for 4, as a function of
t, indicated by the bold lines. The zeros of 7,(¢,) with r =1 are indicated (x), with L—1 of
them surrounding ®? and one at wa. The contour %,, indicated, surrounds all the zeros
of 7,(¢,) except wa. The domain 2, lies outside the two contours.
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and relabeling the spins in the rows. In fact, from (2.20), in a diagonal
representation we have the relation

(Tq)diag=D(Tq)diag (f;zq/.fp’q)L (223)

where D is some diagonal matrix which is independent of q.
We can choose the variables x,, ¥,, t,, X,, Vps Ly, X4 Vg t, SO that
they all lie on the unit circle, and arrange them in the following order:

arg(x,), arg(x,) < arg(x,) <arg(y,), arg(y,)
<arg(y,) <arg(ox,), arg(wx,) (2.24)
and

arg(1,), arg(?,) < arg(t,) <arg(wt,), arg(wt,) (2.25)

If we choose ¢,, t,, and ¢, to satisfy (2.25), then there is a unique choice
of x,, x,, etc, that satisfies (2.24). If —2nr/N <arg(t,) <0, then we have
[2,] <1, and if 0 <arg(z,) < 2xn/N, then we have |4, > 1, and similarly for
t,, A, and t,, A,.

s

Fig. 3. The cut 2, plane, showing the branch cuts for ¢, as a function of A,. The zeros of the
polynomial .§(2q) are indicated (x), with (N —1) L —r of them lying between the contours €,
and %_, and r lying inside the unit circle (the broken line), where we indicate the case r=1.
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Once we have chosen the p, p’, and ¢ variables thus, the Boltzmann
weights (2.9) and (2.10) are real and positive, so the model is physical.

The variables 7, and 4, are related by (2.6), so that 4, is a two-valued
function of ., and ¢, is an N-valued function of 1,. The Riemann surface
for 4, as a function of ¢, consists of two complex ¢, planes (or “sheets”)
joined at the branch cuts shown in Fig. 2 (for N=3). The N branch cuts
lie between the points 7, =’y and w’/y ', where j=0, 1,.., N—1. When ¢,
is continued along the unit circle through any of the branch cuts, it goes
from the sheet on which [4,|>1 to the sheet on which |1,| <1, or vice
versa.

On the other hand, the Riemann surface for 7, as a function of 1, con-
sists of N sheets, joined at branch cuts between the points 0, &’ and 1/&', o,
which are shown in Fig. 3.

2.1. The Partition Function and Interfacial Tension

The interfacial tension is defined as follows. For nonskewed boundary
conditions, r =0, the system has a ferromagnetically ordered ground state.
This means that at sufficiently low temperatures (in particular, in the zero-
temperature limit £’ — 0), one would expect to see the majority of the spins
in the same state, ¢ say, where 0 <o < N—1, the N possible ground states
occurring with equal probability.

When r =1, the system should still have an ordered lowest-energy state
in the limit k' — 0, but the skewed boundary conditions are incompatible
with all the spins being in the same state throughout the entire lattice.
Down one vertical boundary, the spins are in state o, while down the
other, they are in state ¢ — 1. In between, in the zero-temperature limit,
there must be some line running down the lattice separating these two
phases of the system; this interface may meander to the left or right, but the
mean direction will be downward.

Still considering the limit &’ — 0, but with r =2, spins near one bound-
ary of the lattice will be once more in some state o, while those near the
other will be in state o — 2. In between, there are a priori two possibilities.

One is that there will be a single interface separating the two phases
of the system, with spins ¢ to the left and ¢ — 2 to the right, and spins 6 — 1
not occurring. Otherwise, spins in state ¢ —1 could occur between the
phases ¢ and o — 2, and so there would be two interfaces running down the
lattice. In the latter case, the phase o — 1 is said to wet the o, 0 — 2 phases.

The r>2 case is the obvious generalization of the r=2 case.

These interfaces should be well defined in the k&' — 0 limit, with dif-
ferent phases of the system containing spins of only the one value. As &'
increases, the system will become more disordered, and the interfaces will
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widen and begin to blur. The various phases will now no longer have all
spins identical, but, for instance, the phase ¢ will still have the majority of
its spins in the state o. As k' — 1, the system has a phase transition into a
completely disordered state.

Associated with each of these interfaces is a surplus of energy needed
to break the ground-state configuration. This energy is called the interfacial
tension.

The partition function of the chiral Potts model with a skew
parameter r on our L x M lattice is defined as

Zrzz H W(ai_aj) 1_[ W(ai_ak) (2.26)
{e} <> ik

where the sum is over all the values of all the spins o, and the products are
over all the SW — NE edges (i, j>, and all SE - NW edges (i, k). In
terms of the eigenvalues T, T, this is

Z,=Y(T,T)™ (2.27)

where the sum is over all N* eigenvalues.
For large L and M, the partition function will be of the form

Z, ~expl(—2LMy — Me,) ks T ] (2.28)
where , the free energy per site in the thermodynamic limit, is defined as

— ks T = lim (2LM)~'InZ, (2.29)

LM—>w
The interfacial tension &, between phases ¢ and o —r is defined as

e /kygT = lim M~'In(Z,/Z,) (2.30)

LM—

where kg is Boltzmann’s constant and .7 is the temperature.

2.2. The Functional Relations

The functional relations for the model with skewed boundary condi-
tions which are derived in ref. 1 are summarized here. Define the functions

=(t,) = [ p, (t,— 1)ty —t,)1" (2.31)
a,=[A(y) —x\ Wy —x)k'1* (2.32)
&,=[A7 vy =y oy —yik 1" (2.33)
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where (2.32) and (2.33) can be written as
a,=[k'(1=2,2,)(1 - Ay AN, 1E

234
&, = [k = A,)(Ay — L)k, 1 (2.34)

so if we write a, = a(4,), then &, =a(1/4,).
The functional relations below define the set of matrices 7,(¢,), j=0,...,
N +1, and the transfer matrices T, and Tq. The 7; matrices, whose entries

are all polynomials in ¢, of degree at most (j—1) L, are related by

To(2,) =0, T(t,)=1 (2.35)
t(wt,) To(1,) =0 Xz(wt,) T, (0’1,) +1,,,(1,) (2.36)
Tyl =" Xz(t,) Ty (ot ) + (o, +&,) 1 (2.37)

where I is the identity matrix, and X is the spin-shift operator, an Nt by
N* matrix with entries

L
X, =108 0/+1) (2.38)
j=1

where the Kronecker delta functions are interpreted modulo N.
We have the following functional relation, relating the matrix 7, =
T(x,, ¥,4» 1t,) to the matrix 7,(¢,):

(Ulup/‘lp' (xp - y(])( t[)' —

: t)1"
T,5(1,) T(xq,qu,,uq)=(u’X[ 4 ] T(X,, Vgr thy)

yp'_yll
— t,—ot)]* 2
+[(yll (qu)( P w q):| T(x,/, (U-'yqvluq) (2.39)
X, — Wy,

We use the following notation: for all complex numbers x and y and
all integers m and n, let

n

[T (x—wiy), nz=m
(X, Vmn=47 "0 (2.40)
[T (x—wi), n<m
Jj=n+1

and define the following functions for all integers j, k, / such that j=k + I

i L
Al = (¥p> Xg)o—1 (—{,,,,-Yp)-k,o (Y Vplow—- l} (2.41)
Nﬂp ,u,;'(xp') xq)—l.[—l

HY =[olul(t,, t,) 1 /(¥ —x))1*F (242)

rq
HY) =gty 1) v/ = x3)]F (243)
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Define

ED = @k ARDYT (2.44)
where T, =Ty, ' X, 4, ). It can be shown that 5%/ depends on k
and / only via j=k + /. We then have the functional relatlon

T,Z "”’ H(p/{)l‘l.' (t,,)+(oj’XjH;,{l’rN Hot) (245)

Finally, we define the matrix S(x,, y,) as follows:

L JLN—1 )
S(xg, yg)=clxy =y )y ¥ =D* H (y s yq) [T Tw'x,. y,)  (246)

— o’
jor \x,— @'y j=o

In ref 7 it was shown that its entries are actually polynomials in 1, of
degree (N — 1) L. For our calculations it is appropriate to define the related
matrix §(/l,,)=l£l""”‘S(iq”') as

S’(A -ci‘N l)L(Y N)(N~I)L

_ iLN—1
x H (y,, w’x, >I [T fw’y,, x,) (2.47)

i=1 w’x j=0
where we choose the g-independent constant ¢ to be
c=N-—NL/2(ApAp’)(N—l)L/4 (248)

If we can determine the matrices 7;(z,) and S’(lq), then we can use
Eq. (2.45) to calculate the transfer matrix Tfl". For, (2.45) defines a set of
N equations, where j=0, 1,.., N—1. If we take the product of these N
equations, then the right-hand side will be a known function of ¢, and 1,
and the left-hand side will be proportional to TNS(l ) Then T follows
from (2.23), and we can compute the eigenvalues of
In Sections 3 and 4 we find integral expressions for the eigenvalues of
the matrices 7;(¢,) and S(iq) which are valid in appropriate domains of the
, and A, planes, and we use these to calculate a band of L complex largest
elgenvalues of T, T, in the large-L limit. From this band of eigenvalues we
can determine the free energy and interfacial tension of the model.

2.3. The Solution

In refs. 6 and 7, the free energy of the chiral Potts model was
calculated for |4,], |4,] <1 and —2n/N <arg(t,), arg(z,) <0, and with
p=p'. Define the functions A(A,,, t,) and B(4,,1,) as
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i N—1
i) =n | T (N=j)In[wR4(0) ~w1,] do (249)
q I 10

J’" JZ" l +A,,e’(' 1+2,e?

Bl o 1—1,e%1—2,."

P ‘I)

X il (N—=2j)In[c0=24(0) — w0 A($)] dO d¢ (2.50)

j=1

where 4(8) is the function
4@ =[(1 +Kk'> =2k cos 8)/k2]'N (2.51)

where we choose 4(8) to be real when & is real.
With r =0 (periodic boundary conditions), there is a unique maximum
eigenvalue, given by

NIn(T,T)=2L[Nlng, +3N—1) In(Z,/4,)
+A(4,, 1) —A(A,, t,) —B(4,,4,)] (2.52)
for L large, and so the free energy per site i is given by
—~Ny/kgT =Nln g,,+3(N~1)In(4,/4,)
+ A(A,, 1) = A(Ags t,) — B(A,, A,) (2.53)

[Note that the functions 4,,= A(4,, t,) and B,,= B(4,, 4,) differ slightly
from their definitions in ref. 7.]

Following ref 1, we will be considering the region [4,|>1, 0<
arg(r,) <2m/N. The model here is physical also, and the maximum eigen-
value should be given by the analytical continuation of (2.52). By writing
Eqs. (2.49) and (2.50) as integrals around the unit circle, and deforming the
contours of integration as 4, crosses the unit circle, we find that A(4,, ¢,)
and B(4,,4,) have the following analytical continuation formulas for
gl > 1;

N-—-1
Auldgs ty= —A(Ag 1) +2 T (N—j) In(@ 71, —wP1,)  (2.54)

j=1

BulAp, Ay = —B(A,, 1/A) + A2, 1) — C(A,, 1,) (2.55)

I’"I

where we define the function C(4,, 1) as

1+/1 elBN 1 i .
=5 j i Z JIn[@~R4(0)— w'?t,]1d0  (2.56)

pa
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When |1,] > 1, the eigenvalue T, T,I is therefore given by (2.52), but
with the integrals 4 and B replaced by their analytic continuations here
defined; so we have for (4, >1

NIn(T,T,)=2LE,, (2.57)
where we define

E,y=N1n g,,+ XN—=1)1n(2,/4,) + AL, t,) + C(4,, 1) + B(A,, 27"

q P P> g

N-1
-2 Y (N=j)In[w ™1, —w/t,] (2.58)
=1

and so the free energy is
—Ny/kgT =E,, (2.59)

The interfacial tension ¢, was found in ref. 2 for the superintegrable chiral
Potts model, where it was argued that it should be the same as that of the
general physical model. We define the function

1/ h'
vr="1n#q—1nA(w“/zmt(,)+%lnh(77m)+mf ' imy)

) wh(my) L G V)

(2.60)

where m is some complex number, and the functions A4(¢), A(t), and P(4, 1)
are, respectively,

r

A(t) = H (1 + /=12y (2.61)
Jj=1
h(t) = A(w 'ty A(w'?r) (2.62)
B . ﬂ(”_N_tN>l/2:|
¥(A, t)=tan [Hl o (2.63)

when 5 <t <y ~'. The interfacial tension was found in ref. 2 to be
8,/k3g_ = 2(vr)saddle (264)
where by (v,)s.qae W€ mean (2.60) evaluated at its saddle point in the

complex m plane.

3. THE LOW-TEMPERATURE LIMIT, k¥ -0

In order to solve the functional relations of the last section, we first
consider the low-temperature k' — 0 limit of ref. 1. In taking the limit
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k' — 0, we can choose the solutions of (2.4) and (2.5) so that x,, y,, x,,
Vpr» Xo— 1, while y,, u,, and p, are held fixed. This implies that ¢, =y,,
where 0 <arg(¢,) <2n/N; also |2,]>1 and |4,], |4,/ <1. It is shown in
ref. 1 that in this limit the matrix T, simplifies, so that we can write

T,=u;"Flt,) (3.1)

where F(t,) is a matrix whose entries are polynomials in ¢, of degree at
most r. If we let F(z,) also denote an eigenvalue of this matrix, then (2.39)
becomes

(t,) Flot,) =0 2Lopu, (1 —1,)]1"5 F(t) + (1 —ot )" FAw’t,) (32)

The zeros of F(t,) were calculated in ref. 1 as the solutions to a set of
Bethe-ansatz type equations. Let the zeros of F(z,) be t,=e*™ for j=1,.,r,
S0

At,) o T (1—e~2m,) (33)

j=1

where the proportionality constant is independent of ¢,.

In ref. 1, Baxter notes that there are two distinct types of eigenvector
for r=2. The eigenvectors are either combinations of “plane waves” or
“bound states,” and Baxter notes that the fully bound states give the
greater contribution to the partition function. Letting ¢ = lu,u,|, then for
L large, these satisfy

le" sin(a; —rr/N)/sina,| =1, a=0, +(1—j)n/N (3.4)
We can gain some insight into the location of the zeros of F(z,) and
15(¢,) by considering the limit ¢ — 0 and then varying ¢ to see how the loca-
tion of the zeros depends on & In order to maintain the first equation of
(3.4) as ¢—> 0, we choose o, =nn, where n is an arbitrary integer. Then
from the second equation of (3.4), we have o= —nzn + (1 — j) n/N, and as
n is arbitrary, we can choose a;= (1 — j) n/N, j=1,.., r, for the bound-state
solutions. With this choice, the polynomial F(z ) is given by

Fit,)= H (1 —w/~'t,) (3.5)
j=1

This is a polynomial of degree r which has simple zeros lying exactly at the
roots of unity 1, w~',.., 0" "
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As £ =0, the first term of the right-hand side of (3.2) vanishes, so 7,(1,)
is given by
(t)=(1—wt ) (1—w"'t) (3.6)

This is a polynomial of degree L, which has a zero of multiplicity L —1 at
w~', and a simple zero at w~"~'. For r=0, 7,(t,) =(1 —wt,)*, so we see
that a nonzero skew parameter shifts one of the zeros of 7,(¢,) from w ™'
to another root of unity.

Similarly, we calculate the other 7;(z,) functions in the &— 0 limit.
From (2.31), z(t,) =0, so Egs. (2.35)~(2.37) imply

j=1 j—1
T(t) =[] to@*~'t)) =[] A=t )*~ " (1 —w"**t,) (3.7)
k=1 k=1
Once again, the introduction of the skew parameter r merely shifts some of
the zeros of the polynomials z;(z,).

We then increase ¢ to a small but nonzero value (still considering the
limit k" — 0). All of the zeros of the polynomials F(z,) and t;(z,) will move
out from the roots of unity as ¢ increases, but only by a small amount. In
fact, we find that they lie on circles centered at roots of unity, with radii
that are proportional to positive powers of &. Hence (3.3) becomes

Fi)y=1] (g,—w’"'t,) (3.8)

j=1

where the «; are given up to constants of order unity by
1l —a,=0(¢), a=a,+0("/+*VE) for j=2,.,r (3.9)

(There are in fact L possible choices for a,, spaced around a circle with a
radius that is proportional to &". The particular choice of @, determines the
other «;, and different choices of @, define different bound-state eigen-
values.) In particular, for & nonzero, we find that 7,(¢,) has a circle of L —1
zeros surrounding « ™!, with a radius proportional to ¢ when r=1 and
e'L=1) otherwise, and a single outlier which is a distance proportional to
& from ™"

3.1. Generalization to Arbitrary k'

We can use this information to work out integral formulas for the
polynomials 7,(t,), 75(2,),.., Tx(Z,) in the large-lattice L — oo limit. We will
use Cauchy’s integral formula to write expressions for the polynomials by
surrounding their zeros by contours, and obtain integral expressions that
are valid outside the contour.

822/82/1-2-2
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We have located the zeros in the limit &’ — 0, and for & small but non-
zero. We wish to vary k' also, so our results will be useful at arbitrary
temperatures, and in particular valid as the system approaches criticality.

The zeros of 7,(¢,) may move further as k' increases, and the ring they
lie on will surround the branch cut for A, as a function of ,. The zeros of
73(2,),, Ty(t,) will move likewise as we increase k', but for k' small
enough, will still lie in a neighborhood of the roots of unity around which
they originally lay.

When r=0, we see that the zeros of these polynomials will be
clustered around all the roots of unity except ¢, = 1. Thus there will exist
a domain in the complex ¢, plane which excludes all the zeros of the
functions 7(1,),—0, T3(Z4)r=0>» Tw(t,)r=0, but which will contain a
neighborhood of 7,=1. We call this domain %,. Thus 7;(¢,) can have at
most a simple zero in Z,. This domain also excludes the branch cuts for 4,
as a function of ¢,, apart from the one between »# and 1/n.

q°

3.2. The Polynomial T1,(t,)

We follow the method of refs. 6 and 7. From Egs. (2.36) and (2.37),
we see that

Ta(t,) Towt,) - To(@™N T ) =, + &+ E (3.10)

where £ is a sum of products of the polynomials 7, and z. The left-hand
side of (3.10) is a polynomial in t’qv of degree L, which we will call M(z,).
Let its zeros be at a,.., a?, so

L

M(t,) o« TT (@¥ =) (3.11)

J=1

(In the limits k', e = 0, we found q; =1, j=1,..., L; for k' and ¢ different from
zero, we expect the a; to lie in some neighborhood of unity.) Following our
comments regarding the location of the zeros in the k' — 0 limit, we can
write

L
Ty(1,) o (@) —@"*'t,) H a;—wt,) (3.12)

The zeros of M(t,) will occur in N sets of L, clustered around the
roots of unity 1, @,..., "', Let %, be a simple closed contour oriented in
the positive direction which surrounds all the zeros of M(z,) that lie near
the point w™', ie., %, just surrounds the hole in 2, around w~'. Then
inside %, lie the L —1 zeros of 7,(f,) that are made up of the L original
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zeros of the polynomial, less the one that was shifted; and the shifted zero
of t,(c0™",).

Let a=a,, so w~'a is the zero of 1,(t, ,) which gets shifted when the
boundary conditions are skewed. Then using Cauchy s integral formula and
Eq. (3.12), then integrating, we can write

a— ws 1 d
n{rz(s) m}=;{—l ("ln C(t—s)Eln M(t) dt (3.13)

where C is a constant of integration, to be determined. This form of 7,(s)
is valid whenever s is outside %,.

Consider the limit L — oo. From the low-temperature limit, when &’
and ¢ — 0 with &’ < &>, we note the following:

x, = O0(1), a,=0(eN), =(t,) = O(eh), 75(t,) < O(1) (3.14)

With this in mind, the dominant term in (3.10) is &, all the other terms
decaying exponentially to zero as L — co. If we assume that this behavior
holds for general k' and ¢, then in the L — co limit, we may replace M(¢,)
with &,. Substituting this into (3.13), we have the exact expression

a— s
In {rg(s) m} o 5{5@ In C(s—0) 7 ln &Aydt  (3.15)

for L large and s outside %,. The A occurring in the integrand is chosen so
that |4} > 1, to be consistent with the low-temperature-limit calculations.
This integral is taken around the contour of integration %, on the |1,|>1
sheet of the 7, Riemann surface. However, the integrand of (3.15) is now
analytic inside the part of the cut ¢, plane that lies inside %, [ the function
@A) has zeros when A= 4, or 4, but as |4,|, |4,/ <1, the zeros of a(4) lie
on the other 7, plane]. We can thus shrink the contour of integration down
until it just surrounds the branch cut from w ="' to @ "'y~ ".

As t goes around this branch cut in the ¢ plane, A goes once around
the unit circle in the A plane in the positive direction. Changing variables
from 7 to A in the integral, we obtain

a—ws d
In {Tz(s)m} zmiﬁln Cls—1)Zmad)di  (3.16)

where €, represents the unit circle in the A plane.
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The constant C is evaluated from the L — oo limit of (3.10). We then
make the substitution 1=e¢”, so t=w~'4(6). Replacing s by ¢, we have

a—wt
In{,(t,) ———L
{2( q)a—a)""‘tq

__I_,r" <1 +1,e% 14+2,e”
Tdnle \1-2,e% 1—1,€"

>ln[A(0) —owt,)dd  (3.17)
as our integral formula for 7,(z,), which we can write as
7"Z(tq)=_—q‘('.l(tq)r=0 (318)

This expression is exact subject to our assumptions about the location of
the zeros, for ¢, outside %, and L large.

3.3. The Polynomials T,(t,)

We can use Eqgs. (2.35)-(2.37) together with (3.18) to derive an expres-
sion for the functions t4(t,),.., Ty(f,) in the limit L— co. Iterating
(2.35)—(2.37), we have

(1) =15(1,) Towt,) -+ To(@w ) + & (3.19)

where ¢ is a function made up of sums of products of 7, and z functions
as before. As long as ¢, is not a zero of any of the 7, functions appearing
in this formula (ie., for ¢, in 2,), then the z functions will be exponentially
smaller than any of the 7, functions, and therefore negligible as L — oo.
Therefore, we have

7;(2,) =jl:1 (w7 '1,) (3.20)

k=1

which is valid for L large and for ¢ € 2,.

3.4. Possible Values of a

We noted that there were L values a could take in the k' — 0 limit, and
each one corresponded to a different bound-state eigenvalue of the transfer
matrix. For general &’ we derive an equation for the possible values of a as
follows. Consider the j=N —r case of Eq. (2.45). In the k' — 0 limit we see
from (3.1) and (3.8) that T, has a zero when ¢, =4, and we see later that
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this is true for k' nonzero also (though we do not assume it here). From
(3.20) and (3.18), remembering that when r=0 the zeros of 7,(z,) are
clustered around w~', we can see that the polynomials 7,(w"~"7,) and
Ty_,(t,) are both nonzero at ¢, = a. If we then substitute £, = a into (2.45),
the relation becomes

HP-IH T = —w+ 2 (0™ ~a)/ty_ (a) (3.21)

which can be written using (3.20) and (3.17) as

Lin |:(a)/'tpiup’)r ﬁ (t,,—w—ja)(tp,—w”fa)]

Jj=1

L (2 /141" 1+2,e"
= l — 2 - L4 =
Q nw+47’[J~0 (1_Apexﬂ+l_)'p'e10>

x z In{[4(6) —w~al[4(0)—w~*'al} dd  (3.22)

j=1

This integral equation is exact in the limit L — oo, and for finite L it is
exact up to terms that vanish exponentially with L. We have plotted the
various allowed values of a in Fig. 4, numerically solving the equation for
L =60 and k'=0.104, 1,=11/20, u,=1/2. Note that there are L possible
values for a, that they lie on a closed contour surrounding the branch cut
for A, as a function of ¢,, and that they are distributed nonuniformly
around this contour. As L — oo, the solutions to (3.22) become densely
spaced on this contour.
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Fig. 4. Solutions to Eq.(3.22) for N=3, r=1, k'=0.104, 1,=1/8, 1,=11/20, and L=60.
The branch cut for 2, as a function of ¢, is shown in bold, between the branch points 7 and
/.
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4. THE POLYNOMIAL S(Aq)

4.1. The k' —» 0 Limit Again

We now derive an expression for the polynomial S(lq), which was
defined in Eq. (2.47). Call the RHS of (245) ri(t,, 4,), j=0,1,., N—1; as
the polynomials 7;(¢,) and t,_ j(wft ) for j=0,1,., N—1 are exactly
known functions of ¢, for ¢t € 9,, so the function r;(t,, 4,) is an exactly
known function of 1, and ¢, for ¢,€ 9,. The zeros of r; (tq, A,) are zeros of
any of the functions on the LHS of (245), i, zeros of either T,, T, or
A(J 0),

We need to locate the zeros of S(/l ), and as per the last section, we
start by considering the limit &' — 0. Then (2.41)—(2.43) become

A‘f 0 oc (Au - ML, H‘pfq’ (A~ M5, ﬁ;’[; o (uy Ik (41)
where all the proportionality constants are of order unity. Also, in this limit
T, is given by (3.1), and so if we can locate the zeros of r;(¢,, 4,) in the
A, plane, we can identify which belong to T, and hence to $(1,).

We first consider briefly what happens when r=0 (the case con51dered
in refs. 6 and 7). From (3.1), T, is order unity, so all of the zeros of r; will
be zeros of T jo- The t; polynomlals are order unity also, so the functlonal
relation sunphﬁes becommg, forj=1,.,N—1,

F;oC C|5(N_j)L/1{7L+CZk’L (42)

where ¢, and c, are order unity. The zeros of the functions r; for j=1,..,
N—1 lie on circles centered at the origin and with radii proportional to
eV I/k', while ry is order unity. All (N —1) L of these zeros are contained
1n31de the annulus 1 < |4,| < 1/k’, and these make up all the zeros of S(A 2
Guided by the results of the last section, we expect that some of the
zeros of S(,l ) will shift when we have r nonzero. From Egs. (3.1), (3.8),
and (3.9), we see that when t,€ 9,, then T, « (¢"—k'A,), with a propor-
tionality constant which is order unity. Also, 7;(¢,) and Ty_;(w't,) are
order unity unless 0<j<N—r—1 when t5_(w't) « (¢—k'4,), or
N—-r+1<j<N—1 when t,(t)) oc (¢"—k'4,). The functlonal relatlon
(2.45) becomes
ri(tgs Ag) o e &N T (2) AT+ ook Py (w0t) (4.3)
where ¢, and ¢, are order unity, and 1,(¢,) or 7y_;(w’t,) is either order
unity or proportional to (&"—k'4,), depending on the value of j. There are
N such equations, with j=0, 1,.., N—1.
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The zeros of r; and T, are as follows; when j=0, then
ro o (e"—k'4,), and so r, has only a single zero, which in fact corresponds
to the zero of T,. Thus Ty, is order unity.

When 1< <N —r— 1 then r; has L zeros lying on circles centered at
the origin and with radii proportional to ¢V ~/~"%/k’', and one outlier at a
distance proportional to &/k’. This outlier must belong to T, the L zeros
lying on each of the circles belonging to quo.

When j=N —r, the L zeros of r, lie on a circle centered at the origin
and with radius proportional to ¢"/k’. One of these must belong to T, and
so the zeros of T Z(v —r.0) are the remaining L — 1 zeros that lie on the Circle

Finally, when N—r+1<j<N—1, the zeros of r; consist of L—1
points lying on circles centered at the origin and with radii proportional to
gN=NLAL=D/k" and one outlier at a distance proportional to &’/k’. The
%utlier belongs to T,, the L —1 zeros spaced around each of the circles to

v All the zeros of T j=1,2,., N—1, are zeros of $(1 ¢)» and thus we
have located (N—1) L —r zeros of S(A ), all of which lie outside the unit
circle, in the annulus bounded by the unit circle and the circle |4,| =1/k".

Let S‘ (4,), j-—-l 2,.., N—1, be the polynomial in A, which has the
same zeros as r;( ) when 1,€ %,. (The j=0 polynomial is simply a con-
stant.) Then each § (4,) is a polynomial of degree L+1 if j=1,..,

N—r—1, and degree L if j=N-—r,., N—1. They all contain the factor
(A,— 4,), where 1, is the value of 1, corresponding to ¢, =a, with |1,| > 1.
[ThlS zero belongs to T, in each case and so is not a zero of S(l 3]
Otherwise all of their zeros lie on circles centered at the origin and which
lie inside the annulus 1 <[4,/ <1/k’, and S(/I,,) contains the factor

N-1
(4, — AN I1 Sj(iq) (4.4)
j=1

From Section 2, the polynomial S’(,lq) must have (N—1) L zeros, so
there are r zeros still to locate. We have only found the zeros that lie out-
side the unit circle, so there must be r zeros inside the unit circle. Consider
the polynomial S(4,) defined by (2.46). The product of the Tw’x,, ¥,)
functions becomes a product of F(w’t,) functions in the &' — 0 limit, so
S(4,) o (a,—t,Na,—1,)---(a,—1,), when ¢, e@ Denote the corre-
spondlng zeros in the A, plane as 1,, 4,,,.., 4,,, where each of the 1.,

=1,..,, r, are chosen so that (4, |> 1, so that S(l ) also has the factor

ﬁ Ay~ 25 (4.5)
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Hence in the &' — 0 limit, we have located all (N —1) L zeros of S(lq). We

have

(Ag—=AL") - (A=A )y N=t
2 (Al T 1‘[ $,(A,) (4.6)

q

S(a,) o

where the proportionality constant is order unity.

The distribution of the zeros of S(l ) is largely the same as the r=0
case, and we see again that when r is nonzero, r of the zeros of S(l ) move
inside the unit circle.

4.2. The Polynomial $(A,) for k' Nonzero

We can now work out an integral equation for the polynomial S’(Aq),
when k' is nonzero and L large. As L — oo, then from (3.9), we see that
a,—a, j=1,.,r, and so A, — A,. Hence for L large, $(,) has a zero of
multiplicity r corresponding to the factor (4,~4;"')".

For k’ nonzero, we expect that the zeros of r;(4,) will still lie in largely
the same distribution as they do in the k&' — 0 limit, but that perhaps they
will shift as k' increases. We still expect (N—1) L —r of the zeros to lie
inside the annulus 1 <|4,| <1/k’, and that the r-fold zero at A" will lie
inside the region k' < |4,| < 1. The zeros outside the unit circle can be sur-
rounded by two contours, one lying just outside the unit circle, called €_,
and one lying outside ¥_, called ¢_, as indicated in Fig. 3. Both contours
are contained inside the annulus 1<A,| <1/k’, and are oriented in the
positive direction.

Using Cauchy’s integral formula as in the previous section, we have

d [
—lnS(l 2n = l,awlnr(/l)
1 ' d ,
~ ot T ar P (4.7

Jj=1,.., N—1, which is valid when either A is inside ¢_ or outside %, . This
expression is exact for finite L, and we can make it more explicit in the
limit L — co. From the k' — 0 limit, we can see that on %, the second term
of (2.45) dominates, while on %_, the first does. Define the polynomial £(A)
by

N-1
&A= T1 S (4.8)

j=1
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Then integrating with respect to A, we have for A outside ¥, and '€ 2,

{ .
In é(l)=c,+—2? dA In{A—1") —ln[ ]—[ HY (w’t’)J

T
iJe, dv priN=J

1 N-1
—_— ’ _ N (I)
sz{%& d' In(A—1) — ln[ I H,,,,r,(t)] (4.9)
where ¢, is a g-independent constant of integration.

As the functions H\) and H ), given by (2.42) and (243), respec-
tively, only appear as logarlthmlc derivatives in the integrands, we can
neglect any factors they possess that are independent of the g-variables (as

these do not contribute to the integrals), so we have

N-1 N-1 )
H H;'{I) o ( '—/?.p)L‘N—” H (tp_(ojtf)—_}L
i ! (4.10)

N—-1
[T BY) o [XHX=2,)1% D2 T] (1, — ')
j=1

j=1

Substituting these and (4.9) into (4.8) and expressing the integrands in
terms of ¢ and A’ only (rather than X', ', etc.), and evaluating the integrals
that contain only 4', we get

Iné(A)=c;+(N—1)Inga,

1 , d Mty [(wlt)
+2—m3§(6+ A1 In(A— 4 )——ln[ I ———}

jm1 (1,—w’t')y/*t

1 d N . .
——— ’ n_" ) , o i jL .
5, @A (=2 7 ln[ [_]l (1)t —’t') ] (4.11)

(where ¢, is a new g-independent constant of integration). The next step,
following refs. 6 and 7, would be to integrate this expression by parts.
However, the integrands have branch points when the factor {(a — ¢) occurs
in the argument of the logarithm in the integrands, corresponding to
branch points at 0, 4;!, 4,, and oo in the 1, plane. We use (3.18) and
(3.20) to manifest the factors (a—1) explicitly, writing them as a”—1",
which is an analytic function of A. Once these factors are removed, the
functions remaining in the integrands contain no branch points, so the
integrals are then single-valued around their respective contours, and hence
we can perform an integration by parts. In fact, the resulting integrands
have no zeros at all between the contours ¥, and %_, so both of these
contours can be shifted to the unit circle and the integrals combined to give
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&AM =c,+(N—1D)Ind,+(N—r—1)In(A—1,)
A—27
+(N—2r) ln< - >

In g(r')—

dax

+§?{i§£z—x' =z vl (4.12)

where
r—1 N—1
g =1] (a—coft)/ [1 (a—wh) (4.13)
Jj=1 j=r+1
and

-1
Ul1] =NZ In[ (2, — 0’t)’" (£, — /)7 1;(1), _o/Tw_ j(@1), 0]

j=1

-1
= Y. {JLIn[(z,— /1)1, —@’1)]

j=1

+(N=2))In to(@’~'1),_o} (4.14)
The polynomial $(A o) 1s related to &(4,) by (4.6), and so we get
InS(A)=cs+(N—1)In&,+(N—r)In(4,— 1"
—rin(4, -4 )—(N—2r)1n/1

dr

2mﬁgz 8lt )—‘—ﬂgl SULC] (415)

(where ¢, is independent of g) for |4,| > 1. Finally, we can replace 1/(4,— ")
with (4, + 2")/[24'(A,— A")] while only adding on a g-independent constant,
so if we let A’ =¢% and ¢’ = 4(0), then we get finally

InS(A)=cs+(N—1)Inga,
=3[4T )+ A 1)+ B(A,, A7) + B(A,, A7Y)]

q >°p
+(N—=r)In(A,—A; H—r In(A,—4,)
—(N=2r)InA,— NK2Z,) (4.16)
where we let
ar A + A
I(2,)= In g(¢") 4.17)

4m g /1 —X
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5. THE FREE ENERGY AND INTERFACIAL TENSION

Consider once again Eq. (2.45), taking k=, /=0. From the limit
k' -0, we see that when |1,|>1 and L is large, the second term of the
right-hand side exponentially dominates the first. Thus in the L — oo limit,
we have

T, ASOT jo=H Dy (0't,)
+ an exponentially smaller term (5.1)

We take the product of this equation over j running from 0 to N—1 and
ignore the second term in (5.1), which is negligible for large L. From Egs.
(2.41) and (2.42) we have

N-=-1 ANN=—1)2N—-1 L
,1:[0 A(“j'm:[w—)” H —w’y,,)’(x,,—co”—f—‘y,,)f] (52)
and
NN—-1)2 N—-1 L
H H(J) [(C(U;‘p) N)N l—[ N j— 't )j} (5.3)

so using these and Eqs. (2.47) and (2.23) we derive an expression for the
eigenvalues T, T,:

(T, T)Y S(4,)

— e—niL(N— l)(N—Z)/S(A?./Il '13')(N—1)L/2

x(€,)*N =1 (g, gg)V - DV
N—-1 ) N-1 ) . ]
x [T tv-jl@’t)? T] [(t,— @/t N1, —’t,)]7XN=DL (54)

j=0 Jj=1

We take logarithms, substitute in the expression (4.16) for S(Aq) from the
previous section, and also note that

N-1 .
Y. Inty_(w’t,)
j=0
—1
= —rlIn(a” —1¢! )+NZ In(a —w’t,)

Jj=0

+1[CAp, 1)+ CAy, 1))+ Lui(N—1)2N—1)/6  (5.5)
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Equation (5.4) contains an unknown multiplicative term, the matrix DV,
which is independent of g. Because there is already an unknown term [ the
integration constant appearing in (4.16)], we can in fact write all terms
which are independent of ¢ as a single constant, m,,,., which will be deter-
mined shortly. We write (5.4) as

e’

NInT,T,)=m,, + E,+ E,, + 2NF, (5.6)

q- 49

The function E,,, which is proportional to L, and therefore contributes to
the bulk part of the partition function, was given in Eq. (2.58), and the

function F,, which is independent of L, is given by

q°

r—1

F,= —rlnpg,—In[(,—2;Y/2,1+ Y In(a—w’t))-K2,) (57)
/=0

q
Jj=

This depends on p and p’ only through a (and also 4,), and contributes to
the interfacial tension.

The constant m1,, is calculated as follows. Consider the j=N —1 case
of Eq. (5.1); ignoring the exponentially small corrections (i.e., assuming L
is large), the right-hand side is an exactly known function (the 7, _; func-
tion in this case being unity). Applying the automorphism R of Eq. (2.7) to
both sides, we find

Tg, Tq: (&pq gl/n)L and T, TRq: (g,,'qg,”,:)l‘ (5.8)

From (5.6), we see that the constant m,, is therefore given by

rr’

2my,, =1,+1,—2N(F, + Fg,) (5.9)
where
l,=NLIn(g,,8,)—E,;—E, ry (5.10)

The function E, 5, is defined by the analytic continuation formulas (2.54)
and (2.55), and we find that /, +/, = 0. The function Fg, is defined in terms
of the analytic continuation of /(4,) to |4,/ <1, and we find that I(1,)
defined by (4.17) has the analytical continuation formula

L(2)+1(1/4,)=1n g(1,) (5.11)
when |1, <1, and where g{t,) is given by (4.13). Hence we find that
m

N(F,+ Fg,) = —N In(—,k'[k?) (5.12)

=
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Let 2v,=2F,+m,,, 5o

pr'

r—1

vo=rlnp,— Y In{fa—w’t )y +In[(1,—1;"/A,]

j=0

+3In(—Kk'2,/k*)+ 1(A,) (5.13)

We can rewrite {5.13) so that it depends only on «, rather than on
both « and A,. The contour of integration of I(4,) as defined by (4.17) is
around the unit circle in the A’ plane; if we change the variable of integra-
tion to ¢, where " and A’ are related by (2.6), then we integrate around the
branch cut between x and 1/7 in the ¢’ plane. Writing this as a line integral
along one side of the cut, we can rewrite /(1,) as

1w od . ol 1,—A7
I(lq)—;L dr W(A,,,t)zlnh< . )+rlna—ln< » >

1, /=2, 1 -

—-51]’1( 2 >+51nh< P > (5.14)
where the functions A(t), h(z), and ¥(A,t) are defined by (2.61)—(2.63),
respectively. Letting m = —w"?/a, we find that v, is given by (2.60). The
variable a can take on any of the L values allowed by Eq. (3.22). Thus we

have the following expression for the L largest eigenvalues of the transfer
matrix:

NInT,T,)=L(E,, +E,,) —2v, (5.15)

To calculate the partition function, for large L, the sum in (2.27) will
be dominated by these L bound-state eigenvalues. As L — co, the sum
becomes an integral over the allowed values of «, so we write

z,=<f pla)(T,T )™ da (5.16)

where p(a) is some distribution function which is independent of M and L.
Noting that £, is independent of «, then (2.29) implies that the free energy
I8

~NylkyT =3(E,, + E,,) (5.17)

Pq

[which reduces to (2.59), the analytical continuation of the ground-state
eigenvalue of the.system calculated in refs. 6 and 7, when p = p']. Thus the
interfacial tension is given by

e‘M"/k"f=§p(a)e_2Mv’da (5.18)
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For M large, this integral can be evaluated by the saddle-point method; the
integral is dominated by the contribution from its saddle point, and so as
M — oo the integral is given by the value of its integrand at its saddle
point, together with some multiplicative factors with which we are uncon-
cerned.

We can now follow the arguments of refs. 1 and 2 regarding the loca-
tion of the saddle point. In ref 1 it was demonstrated that in the limit
k' — 0, the function v, possesses a saddle point which is independent of p
and p', and hence the integral (5.18) can be evaluated by deforming the
contour of integration to pass through this saddle point. Assuming that this
holds for general k', then we arrive at (2.64) for the interfacial tension. This
depends on ¢ but not on p or p’.

In ref 2 the interfacial tension was considered in the scaling region,
k—0,k'—1, =0, where (2.64) simplifies to

&, [kg T =4py'N*+272 sin(nr/N) (5.19)
where

2 e g - (ll)/
p_njo(l xR dx =28 (.= ) [n(N+2) (5.20)

is a beta function, and depends only on N (and not #). Hence in the scaling
region the interfacial tension is independent of the horizontal rapidity ¢
also. From (5.19) it follows that the critical exponent u, defined by

e, o (T.—TY as T =7, (5.21)

s u=1/2+1/N.

Au-Yang and Perk® consider the symmetric case t,=w'? 1,=
[(14+k)/(1 —=Kk)]'?, t,=1. Then Eq.(2.64) for the interfacial tension sim-
plifies, becoming their Eq. (2.73). They also expressed the low-temperature
interfacial tension as a dilogarithm integral, and wrote the next-order
correction to the scaling region interfacial tension (5.19), thus finding the
crossover exponent ¢ =1/2 —1/N.

Finally, in both the low-temperature and scaling limits, the interfacial
tensions satisfy the inequality ¢; <é, +¢,, where j=k +/mod N. Hence in
both of these limits the system is nonwetting, and is presumably so in the
entire subcritical region 0 <k’ < 1. At zero teperature k' =0 and criticality
k' =1, the system superwets, i.¢, £, =rg,.'®

6. SUMMARY

In summary, we have directly calculated the partition function of the
general solvable chiral Potts model for a large rectangular lattice with the
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skew-periodic boundary conditions (2.1) linking the left- and right-hand
sides. This gives both the known free energy and the interfacial tension.
The latter result agrees with that obtained previously by considering the
superintegrable case and “Z-invariance” arguments.

To do this, we calculated a band of eigenvalues T, of the transfer
matrix. They can be thought of as excitations from the ground state of
the case with periodic boundary conditions, and are characterized by a
single string of r zeros of T,. [At low temperatures it takes the simple
form (3.8).] Presumably a general excitation (for large L) is simply an
appropriate superposition of such elementary excitations. (Some work on
excitations has been done by McCoy and Roan.!*'%)
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